

Bureau Veritas Consumer Products Services Germany GmbH

Businesspark A96 86842 Türkheim Germany + 49 (0) 40 740 41 – 0 cps-tuerkheim@de.bureauveritas.com

Certification body of BV CPS GmbH Accredited according to EN 45011 -ISO / IEC Guide 65

Certificate of compliance

Applicant:

Bender GmbH & Co. KG Londorfer Str. 65 35305 Grünberg Germany

Product:

Automatic disconnection device between a generator and the public low-voltage grid

Model:

VMD460

Use in accordance with regulations:

Automatic disconnection device with three-phase mains surveillance in accordance with Engineering Recommendation G59/3 for generation systems with a parallel coupling in the public mains supply. This serves as a replacement for the disconnection device with isolating function that can access the distribution network provider at any time.

Applied rules and standards:

Engineering Recommendation G59/3:2013

Recommendation for the Connection of Generating Plant to the Distribution Systems of licensed Distribution Network Operators.

DIN V VDE V 0126-1-1:2006-02 (Functional safety)

Automatic disconnection device between a generator and the public low-voltage grid

At the time of issue of this certificate the safety concept of an aforementioned representative product corresponds to the valid safety specifications for the specified use in accordance with regulations.

The aforementioned product does not provide direct current injection monitoring and residual current monitoring. Therefore these protection functions need to be installed externally if required.

Report number: Certificate number: Date of issue: 13TH0057-G59/3 U14-0132 2014-02-28

Certification body

CCOUNTABILITY

Appendix 13.1 Type Testing a Generating Unit

Extract from test report according the Engineering Recommendation G59/3

Nr. 13TH0057

ender GmbH & Co. KG ondorfer Str. 65 305 Grünberg ermany itomatic disconnection device between a generator					
305 Grünberg ermany					
ermany					
•					
tomatic disconnection device between a generator					
d the public low-voltage grid					
1D460					
C/DC 75300					
4070					
0300 (L-N) / 0520 (L-L)					
65					
atchdog: D397 V1.03					
Messtechnik: D398 V1.xx*					

x = could be any number or sign

Measurement period: 2014-01-30 – 2014-02-25	
---	--

Figure 1 – Schematic structure of the power generation unit

The above stated automatic disconnection device is tested according the requirements in the Engineering Recommendation G59/3. Any modification that affects the stated tests must be named by the manufacturer/supplier of the product to ensure that the product meets all requirements of the Engineering Recommendation G59/3.

Appendix 13.1 Type Testing a Generating Unit

Extract from test report according the Engineering Recommendation G59/3

Nr. 13TH0057

Protection. Voltage tests.								
Phase 1								
Function	Set	Setting		o test	No trip	test		
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm no trip		
U/V stage 1	200,1V	2,5s	200,2V	2,512s	204,1V / 3,5s	No trip		
U/V stage 2	184V	0,5s	184,1V	0,515s	188V / 2,48s	No trip		
	180V / 0,48s	No trip						
O/V stage 1	262,2V	1,0s	262,6V	1,008s	258.2V 2,0s	No trip		
O/V stage 2	273,7V	0,5s	274,0V	0,513s	269,7V 0,98s	No trip		
	277,7V 0,48s	No trip						

Note for Voltage tests the Voltage required to trip is the setting $\pm 3,45V$. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting $\pm 4V$ and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection. Voltage tests. Phase 2								
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm no trip		
U/V stage 1	200,1V	2,5s	200,2V	2,508s	204,1V / 3,5s	No trip		
U/V stage 2	184V	0,5s	184,1V	0,512s	188V / 2,48s	No trip		
	180V / 0,48s	No trip						
O/V stage 1	262,2V	1,0s	262,7V	1,012s	258.2V 2,0s	No trip		
O/V stage 2	273,7V	0,5s	274,0V	0,515s	269,7V 0,98s	No trip		
					277,7V 0,48s	No trip		

Note for Voltage tests the Voltage required to trip is the setting $\pm 3,45$ V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Appendix 13.1 Type Testing a Generating Unit

Extract from test report according the Engineering Recommendation G59/3

Nr. 13TH0057

Protection. Voltage tests. Phase 3								
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm no trip		
U/V stage 1	200,1V	2,5s	200,1V	2,513s	204,1V / 3,5s	No trip		
U/V stage 2	184V	0,5s	184,0V	0,511s	188V / 2,48s	No trip		
	180V / 0,48s	No trip						
O/V stage 1	262,2V	1,0s	262,4V	1,010s	258.2V 2,0s	No trip		
O/V stage 2	273,7V	0,5s	273,8V	0,513s	269,7V 0,98s	No trip		
	·	· · · · ·		·	277,7V 0,48s	No trip		

Note for Voltage tests the Voltage required to trip is the setting $\pm 3,45V$. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting $\pm 4V$ and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection. Frequency tests.								
Function	Set	ting	Trip test		No trip test			
	Frequency	Time delay	Frequency	Time delay	Frequency / time	Confirm no trip		
U/F stage 1	47,5Hz	20s	47,50Hz	20,193s	47,7Hz / 25s	No trip		
U/F stage 2	47Hz	47,2Hz / 19,98s	No trip					
	46.8Hz / 0,48s	No trip						
O/F stage 1	O/F stage 1 51,5Hz 90s 51,51Hz 90,237s							
O/F stage 2	52Hz	0,5s	52,01Hz	0,545s	51,8Hz / 89,98s	No trip		
					52,2Hz / 0,48s	No trip		

Note. For Frequency Trip tests the Frequency required to trip is the setting $\pm 0,1Hz$. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No-trip tests" need to be carried out at the setting $\pm 0,2Hz$ and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Г

Appendix 13.1 Type Testing a Generating Unit

Extract from test report according the Engineering Recommendation G59/3

Nr. 13TH0057

Protection. Re-connection tim	er.							
Test should prove that the recor frequency to within the stage 1 s			ss than 20 se	conds for restoration of	voltage and			
		Voltage)					
Time delay			Measured delay					
209			20,032s					
Frequency								
Time delay setting Measured delay								
20s	3		20,025s					
	Checks on no reconnection when voltage or frequency is brought to just outside stag limits of table 1.							
	At 266,2V	At	196,1V	At 47,4Hz	At 51,6Hz			
Confirmation that the Generating Unit does not re- connect.	No reconnection No reconnection No reconnection No reconnection							

Protection. Frequency change, Stability test.							
	Start Frequency	Change	End Frequency	Confirm no trip			
Positive Vector Shift	49,5Hz	+9 degrees		No trip			
Negative Vector Shift	50,5Hz	- 9 degrees		No trip			
Positive Frequency drift	49,5Hz	+0,19Hz/sec	51,5Hz	No trip			
Negative Frequency drift	50,5Hz	-0,19Hz/sec	47,5Hz	No trip			